

March 5 th 1999















### WIRING 4 X 4 ARCMIN 8->1 MUX

|                | IMAGE   | 2       |          | SPECTROMETER    |
|----------------|---------|---------|----------|-----------------|
| 3 ARRAYS       |         |         |          | 2 ARRAYS        |
|                | 32 X32  | 24 X 24 | 16 X 16  | 16 X 16 12 X 12 |
| ADDRESS        | 5 wires | 5 wires | 5 wires  | 5 wires 5 wires |
| DC i/o         | 2"      | 2"      | 2"       | 2 " 2 "         |
|                |         |         |          |                 |
| bias           | 1"      | 1"      | 1 "      | 1 " 1 "         |
| bus bias       | 1"      | 1"      | 1 "      | 1 " 1 "         |
| DC bias        | 1"      | 1"      | 1 "      | 1 " 1 "         |
| ref bias       | 1"      | 1"      | 1 "      | 1 " 1 "         |
| bias           | 1"      | 1 "     | 1 "      | 1 " 1 "         |
| outputs +2 ref | 132 "   | 132 "   | 36"      | 36 " 36 "       |
| main bias      | 2"      | 2"      | 2"       | 2 " 2 "         |
| followers bias | 1 "     | 1"      | 1 "      | 1 " 1 "         |
| substrate bias | 1 "     | 1"      | 1 "      | 1 " 1 "         |
| frame bias     | 2"      | 2"      | 2"       | 2 " 2 "         |
| ground ref     | 1"      | 1"      | 1"       | 1 " 1 "         |
| bridge bias    | 2"      | 2"      | 2"       | 2 " 2 "         |
| heater bias    | 2"      | 2"      | 2"       | 2 " 2 "         |
| TOTAL          | 155     | 155     | 59 wires | 59 59 wires     |

#### **GRAND TOTAL** = 487 **WIRES**



### WIRING FOR 8 X 4 ARCMIN 8->1 MUX

|                | IMAGE   | 2       |          | SPECTROMETER    |
|----------------|---------|---------|----------|-----------------|
| 3 ARRAYS       |         |         |          | 2 ARRAYS        |
|                | 64 X32  | 48 X 24 | 32 X 16  | 32 X 16 24 X 12 |
| ADDRESS        | 6 wires | 6 wires | 5 wires  | 5 wires 5 wires |
| DC i/o         | 2"      | 2"      | 2"       | 2 " 2 "         |
|                |         |         |          |                 |
| bias           | 1"      | 1"      | 1 "      | 1 " 1 "         |
| bus bias       | 1"      | 1"      | 1 "      | 1 " 1 "         |
| DC bias        | 1 "     | 1"      | 1 "      | 1 " 1 "         |
| ref bias       | 1 "     | 1"      | 1 "      | 1 " 1 "         |
| bias           | 1"      | 1"      | 1"       | 1 " 1 "         |
| outputs +2 ref | 262 "   | 262"    | 70"      | 70 " 70 "       |
| main bias      | 2"      | 2"      | 2"       | 2 " 2 "         |
| followers bias | 1"      | 1"      | 1 "      | 1 " 1 "         |
| substrate bias | 1"      | 1"      | 1 "      | 1 " 1 "         |
| frame bias     | 2"      | 2"      | 2"       | 2 " 2 "         |
| ground ref     | 1"      | 1"      | 1 "      | 1 " 1 "         |
| bridge bias    | 2"      | 2"      | 2"       | 2 " 2 "         |
| heater bias    | 2"      | 2"      | 2"       | 2 " 2 "         |
| TOTAL          | 286     | 286     | 93 wires | 93 93 wires     |

#### **GRAND TOTAL = 851 WIRES**



#### **OPERATION**

#### **OPERATING TEMPERATURE :**

Designed to work at 0.3 K under a 1 pW optical flux.

POWER DISSIPATION AT 2 K STAGE (per array) :

-Heat load oN <sup>3</sup>He Fridge by conduction5µW/array--> 1.25 mW total

(assuming a 1/50 <sup>3</sup>He fridge efficiency).

-Bias on read out circuit --> 1->2 mW,

#### **IONISING RADIATION EFFECT :**

To be determined on a accelerator device on prototype bolometer. From ISOCAM a thumb rule gives 1 proton/minute /pixel and the deposited energy is around 150 eV (2.4 E-11  $\mu$ J).

#### **PIXEL ANGULAR RESPONSE :**

Large  $\pm$  40 °. Necessity of efficient baffling, but small size array.

#### **CROSS TALK:**

N/A to the nearest pixel if sampling the PSF. Important for electrical crosstalk between distant pixels.

#### ACHIEVABLE ARRAY SIZE :

64 X 32 Pixels ( 3 x 3 cm<sup>2</sup>).

#### **TELEMETRY** :

TBD

#### **SPIRE Requirements Issue**

Important inputs for requirements are still missing :

- → FTS operation
- → Chopper operation
- Scan Mode with AOCS
- On-board datation : resolution/accuracy
- → On-board processing : instrument data rate / telemetry data rate
- Operating modes
- Degraded modes
- Temperature regulation (He<sup>3</sup>)
- H/K specification (temperature, else) : how many/accuracy/rate





1/03/99

#### **SPIRE Acquisition Rates**

#### **Photometer**

| Central           | Theorical   | Practical   | Number of | Acquisition     | Number of | Number of | Data rate |
|-------------------|-------------|-------------|-----------|-----------------|-----------|-----------|-----------|
| Wavelength        | array sizes | array sizes | pixel     | rate rate       | acq. /s   | bits      | bits/s    |
| μm                |             |             |           | Hz <sup>1</sup> |           |           |           |
| 250               | 32x32       | 32x32       | 1024      | 40              | 40960     | 14        | 573440    |
| 350               | 24x24       | 32x32       | 576       | 40              | 23040     | 14        | 322560    |
| 500               | 16x16       | 16x16       | 256       | 40              | 10240     | 14        | 143360    |
| Total (average) : |             |             |           |                 |           |           | 1039360   |

1 : Assuming a 2 time oversampling

Minimum compression factor compared to **40 kbits/s** (200 kbits/s-TBC) : **26** (5)  $\rightarrow$  **Image rate = 1.5** /s Real compression factor will take into account data format (i.e. 3 bytes / pixel)

#### **Spectrometer**

| Wavelength<br>µm  | Theorical<br>array sizes | Practical<br>array sizes | Number of<br>pixel | Acquisition<br>rate rate<br>Hz <sup>1</sup> | Number of<br>acq. /s | Number of<br>bits | Data rate<br>bits/s |
|-------------------|--------------------------|--------------------------|--------------------|---------------------------------------------|----------------------|-------------------|---------------------|
| 200-300           | 16x16                    | 16x16                    | 256                | 40                                          | 10240                | 14                | 143360              |
| 300-600           | 12x12                    | 16x16                    | 144                | 40                                          | 5760                 | 14                | 80640               |
| Total (average) : |                          |                          |                    |                                             |                      | 224000            |                     |

1 : Assuming a 2 time oversampling

Minimum compression factor compared to 40 kbits/s (200 kbits/s-TBC) : 6 (1.12 !)  $\rightarrow$  Interferogram rate = 1 / 240 s Real compression factor will take into account data format (i.e. 3 bytes / pixel)

#### **SPIRE Acquisition Rates**

#### **SPIRE Signal Processing Memory Needs**

- Dominated by the SPECTROMETER high resolution mode memory requirements (if full spectrum co-addition).
- Assuming a 40 second scanning duration the amount required to store one scan is :

| Number of arrays | Number of acq. /s | Quantization in | Memory size in |  |
|------------------|-------------------|-----------------|----------------|--|
|                  |                   | bytes           | bytes          |  |
| 2                | 10240+5760        | 2               | 1280000        |  |

• Total Memory required includes :

| - | currently acquired spectrum | : 2 bytes |
|---|-----------------------------|-----------|
| - | sum of the spectra (6)      | : 3 bytes |
| - | deglitching table           | : 1 bytes |

Total: 3.84 Mbytes

• Oversampling (factor of 1.5) may be required -> Total with margin : 6 Mbytes

→ Memory could be saved if data reduction is based on error-free data compression algorithm insteed of performing co-additions : no more need for "sum of spectro" & "deglitching" buffers.

#### **SPIRE Requirements Issue**

<u>Assumption</u> : microprocessor running at 20 MHz (clock period = 50 ns)

- CEA Option : 125824 16-bit words /s or one pixel every 8 µs
- → 1 data acquisition every 160 microprocessor cycles
- → DMA in not mandatory

• JPL (Feed-Horn) Option : modulated and oversampled data gives 4 Mwords/s or one pixel every 238 ns

- → 1 data acquisition every 4-5 microprocessor cycles
- → requires DMA in the Signal Processing Unit

• GSFC (T.E.S.) Option : oversampled data gives 64 Mwords/s or one pixel every 15 ns

- $\rightarrow$  incompatible with 50 ns clock period.
- → requires data pre-processing (using hardwired electronics) in the DRCU to reduce Signal Processing input data rate (i.e. factor of 10).
- → requires DMA in the Signal Processing Unit.









### **System Trade-offs for number of detectors**

# What are the limiting factors which determine how far we could extend the effective field of view of SPIRE?

See scientific requirements -

• in summary, a 4'x8' field of view using  $2F\lambda$  horns should be given serious consideration for optimum mapping speed, if the horn option is chosen

 Same applies with filled arrays, so that ideally 2 sets of 32x32, 16x16 and 12x12 arrays would be needed



## Horn arrays: filling 4' x 8' field:



2x19 arrays= 38 detectors



# We will need just over twice as many detectors, and conductors, amplifiers....

SPIRE Systems Team Meeting 4-5 March 1999 Page 2



### **Optics:**

It looks like 4 by 8 arcminutes is possible in the space envelope without the mirrors becoming too large, but there may be problems with space for the photometer arrays





### **Signal wiring issues:**

### Inside FPU

- Connectors- 37, 51 or 100 way ?
- Ribbon cables Kapton or Woven?
- **Cold** Interconnect Harness: FPU to BAU, BAU to DRC and FPU to DRC (ESA responsible)
  - Connectors- 37, 51 or 100 way ?
  - Conventional wire bundles or Ribbon cables -Kapton or Woven?





### **Inside FPU**

| 0.3-4K      | 4'x4' Option | 4'x8' Option |         |        |
|-------------|--------------|--------------|---------|--------|
| Description | Conductors   | Conductors   | Shields | Туре   |
| P250Signal  | 195          | 390          | 0/TBC   | Kapton |
| P350Signal  | 123          | 246          | 0/TBC   | Kapton |
| P500Signal  | 69           | 138          | 0/TBC   | Kapton |
| S350Signal  | 72           | 144          | 0/TBC   | Kapton |
| S600Signal  | 48           | 96           | 0/TBC   | Kapton |
| TCBIAS      | 8            | 8            | 4/TBC   | SST    |
| TCSIG       | 8            | 8            | 4/TBC   | SST    |
| TOTAL       | 523          | 1030         |         |        |
|             |              |              |         |        |

Using twisted pairs separated by ground wires. Detector bias on Kapton ribbons





### **Cold Interconnect Harness**

| 15-300K     | 4'x4' Option | 4'x8' Option |         |        |
|-------------|--------------|--------------|---------|--------|
| Description | Conductors   | Conductors   | Shields | Туре   |
| P250Signal  | 183          | 366          | 0/TBC   | Kapton |
| P350Signal  | 111          | 222          | 0/TBC   | Kapton |
| P500Signal  | 57           | 114          | 0/TBC   | Kapton |
| S350Signal  | 60           | 120          | 0/TBC   | Kapton |
| S600Signal  | 36           | 72           | 0/TBC   | Kapton |
| Det Bias    | 20           | 40           | 10      | SST    |
| TCBIAS      | 8            | 8            | 4/TBC   | SST    |
| TCSIG       | 8            | 8            | 4/TBC   | SST    |
| TOTAL       | 483          | 950          |         |        |

# Using twisted pairs separated by ground wires, which may not be necessary, post JFET





### **Connector options:**

61 detector array: 130 pins 2 x 100w MDM

122 detector array: 255 pins 3 x 100w MDM





### Typical space available: 95 x 75 mm





### **Connector options:**

3 x 51w MDM

61 detector array: 130 pins 122 detector array: 255 pins 5 x 51w MDM



Using ESA-approved 37w MDMs will be even worse!



### **Data Rate**

- Whether we can use a higher data rate depends on the availability of x-band transponders
- Moving to 4'x 8' may be possible even with the current down-link: at present we assume factor 3 compression to get 25 kbps data rate.
- PACS assume factor 80 compression to give 40 kbps!



### Mass of array assemblies

- Array Mass will double
- Optics mass will increase
- BAU mass will increase
- JFET or cold electronics will increase in mass

# **Thermal loads**

• 0.3K load due to supports will double:

$$Q(F, M, Ey, ki) = \frac{3 \cdot (M \cdot ki) \cdot (2 \cdot \pi \cdot F)^2}{Ey}$$

• loads due to wiring will also double





# Power consumption of cold & warm electronics

Will double

- DRC 25 W budget is already tight for TES and horn options
- -but ESA say there is some room for manoeuvre - we could push towards 100W?



SPIRE

### **Increased Costs:**

- Manufacture:
  - Horns
  - Arrays
  - Cables
  - Load resistors
  - Read-out electronics
- Integration Time
- Testing Time

