SPIRE MSSL/M/0048.10

ACKNOA

- 7) REPORT ON ESA (E MEERNE Schedule
- ::) REVIEW OF STRUCTURAL DERICH
- iii) BARECINE INSTRUMENT
- iV) WORKPLAN
- U) SCHEDULE OF NEED DATES / MILESTONES (MEETING
- (i) Division OF RESPONSIBILITIES. + COSTS. + FUNDING.

SPIRE Instrument Development Schedule

																			變Syst	01 02 03	1998
																Det. Array Selection		PDR ◆	類Systemidesign 人 F254 2年 VF	04 01 02 03	1999
_											*			AV	CDR •	tion •	Detail:Design		FREEZE VI	õ õ	_
									0		数COMEManufacture 344年中央	AVM Delivery -		AVM#Manufacture		\\ \		·	,	ο ₄ Ο ₃	2000
Andrea de la constanta de la c								CQM Delivery	COM Readiness Review		uro XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	very —	AVA							Q2 Q3 P4	1007
							MREM.		Review	COM, AIV;										01 02 03 01	2002
				PFM Delivery	PFM Readiness Review	P	REMAManufacture 5/8	Y				Y								01 02 03 04	2000
	FS: Delivery		WES BUILDING INTO ISH	Y	Review 🔷	REMIAIV/Cal	-													02 03 04	1002
Launch	¥	(FSVAIVÆ)																		01 02 04 04	200
3																				21 02 03 04	1,000

171h, July 1888

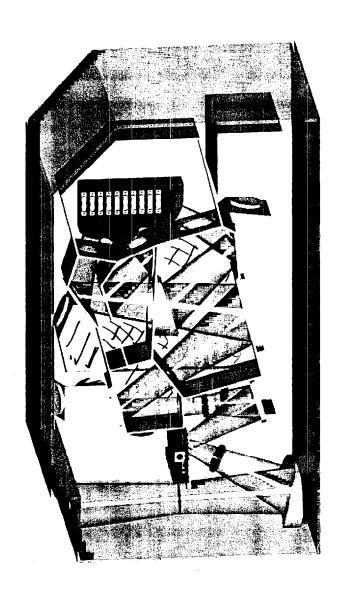
SPIRE STRUCTURE.

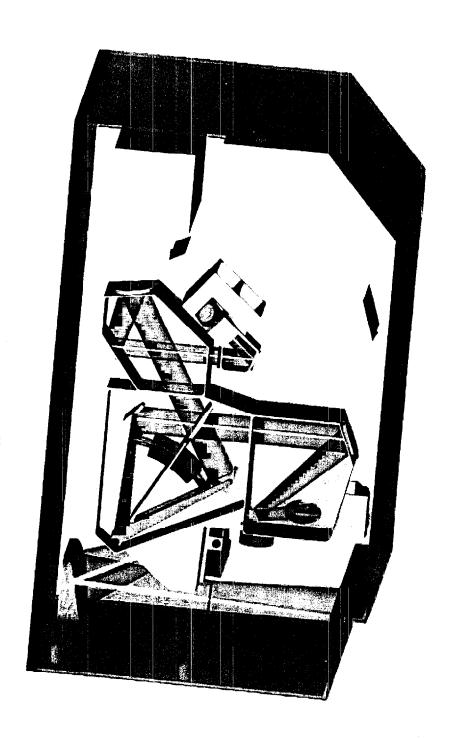
> What we have.

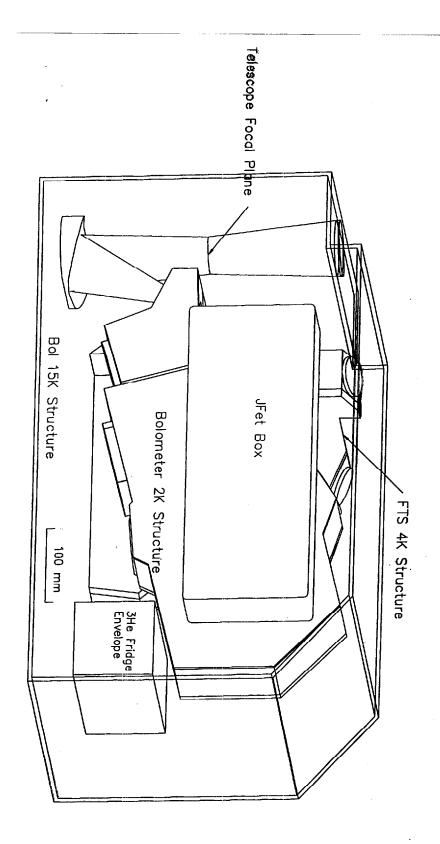
- Outline design of Photometer.
- Exterior profile of instrument.
- ♦ Preliminary mass estimate.
- ▶ Preliminary thermal budget.

> What we need.

- Revised optical design of FTS.
- Outline mechanical design of FTS.
- Preliminary layout of internal structure.
- Revised mass estimate.
- ♦ Revised thermal budget.
- ♦ Outline design of instrument structure.
- & DUTCINE AU/TEST REDURINE
- > This will allow.
 - Definition of the spacecraft mechanical interface.
 - Definition of the spacecraft thermal interface.


- 14 MOUNTING CLUENCE FOR OFFICS


L u FOR DETECTOR ARRAY


+ ACRESCIBLLITY

* EZZOR BUDGET.

* He COOLER MOUNTING SCHENE.

BASECINE INSTRUMENT FOR SALVETURAL VESCON.

- (1) WORST CAKE ME TO BEUSED,
- @ FEED GLOBEL APLANCE WITH FET BOX.
- (3) PROTOLETER DESCEN AS AO
 - ASCOME BAFFLING IS AS FOR OPEN ARRAYS.
 - ASSUME ALL SULFACES FLAVE A TREATMENT OR APPLIED SURFACETOMAKETHAN BLACK.
- @ SPECTROMETEL: ADORT EXISTING DESIGN AS BASECANE

ORB CND

- (5) HELIOM BATH 'ZK'STRUGURE = 1.8K/1.8 '4K' STRUCTURE = 4K/ 3.3K 'ISK' STRUGGE = 9K/ 9.5K OPTICAL BENCH = 11.7k (34K. FIRST SHIELD = 30K/184K.
- (6) FET BOX HEAT SUNK TO THE FIRST CHIELD
- (7) MKS ECTIMATES FRASEL'S 20/1/18
- (8) STALTING POINT OFM'S ACTOCAD DECICU.
- (9) THERMAL DISSIPATIONS.
- 3 MIN RECONDUCT FRED 150HZ. SON UIBRATION.
- 1) CEA CHOMARNESS AS PER 110,
- THERMAL MODEL -O TAKE LATEST MATHICAD MODEL.

Second we Jun

FIRST BOL instrument --- preliminary mass budget --- 20th Jan. 1998

Mass estimate (all figures in grammes)

mass @ 300mK	1455	surface area = 0.06 square metres	
2K - 0.3 K	500	tensioned Kevlar cord ?	
2K - 0.3 K	800	cables, heatsinks and connectors	
mass @ 2 K	7670	surface area = 0.5 square metres	
4K - 2K	700	carbon fibre - epoxy composite	
4K - 2K	800	cables, heatsinks and connectors	
mass @ 4 K	9456	surface area = 1.0 square metre	
15K - 4K	1000	carbon fibre - epoxy composite	
15K - 4K	800	cables, heatsinks and connectors	
mass @ 15 K	9919	surface area = 1.45 square metres	
TOTAL	33100	•	
Back up TOTAL	38645		_

common components at 15K

enclosure	9324	single enclosure, aluminium equivalent to 2.5 mm thick all over
M3	95	aspect ratio of 10:1, includes fasteners

components at 4K

cooling system 4K heat strap

chopper	500	chopper mechanism and mirror M4
Spectrometer channel		
enclosure pick-off mirror	3766 25	enclosure sharing a single wall with the 4K box for photometer
relay mirror 1	40	aspect ratio of 10:1, includes fasteners
relay mirror 2 & 3	120	aspect ratio of 10:1, includes fasteners
Scan mechanism	2800	lightweighted mirrors plus scan mechanism
Input polariser	50	includes fasteners
Collimator	120	includes fasteners
Camera mirrors cooling system	200	
4K heat strap	300	from 4K box to outer shell of 15K enclosure
Photometer channel		
enclosure blocking filter	1680 30	enclosure sharing a single wall with the 4K spectrometer box filter and clamp ring
cold stop	25	. •

from 4K box to outer shell of 15K enclosure

300

components at 2K

3 He Fridge	:4000	≤00g,
Spectrometer channel		
enclosure field stop camera mirror 2 fold mirror 3 blocking filters	840 30 100 70 80	enclosure independent of the 2K box for the photometer including a 2K blocking filter
2K heat strap	200	from 2K box to outer shell of 15K enclosure
Photometer channel		
enclosure blocking filter x2 dichroic 1 dichroic 2 Flat Mirror M5 Mirror M6 Mirror M7 2K heat strap components at 0.3 K Spectrometer channel	1470 200 50 50 40 90 75 175	enclosure independent of the 2K box for the spectrometer 2K blocking filter + clamp ring including clamp ring including clamp ring including fixings including fixings including fixings fixings fixings fixings fixings fixings fixings from 2K box to outer shell of 15K enclosure
enciosure arrays thermal strap	202 100 300	enclosure independent of the 300mK box for the photometer includes fixings
Photometer channel	500	·
enclosure array 1 array 2 array 3	403 50 50 50	enclosure independent of the 300mK box for the spectrometer
thermal strap	300	includes fixings

Mass Increase For Back Up Option

300 mK increase to 2000 due to increased mass of detectors.

15 K increase by 5000 due to inclusion of JFET box and additional connectors / wiring.

P R Hastings / G F Morrison Royal Observatory, Edinburgh

GOALST MATHOCTOBER '98".

- REUGED MASS BUDGET - 7/10/98

- LAYOUT IN SDRC (DEAS)

- CONCEPT FOR EUPPORTING STRUCTURE

Actions

FLASER: - ALL DELEVANT INFORMATION TO MARY - DIMEUSIONS.

BRUCE: - FTS OFTICAL MODEL TO FLANER

FLAGEL: - CHECK FTS CAYOUTWITH NEW MODEL

MARUI - TRABICATE INTO SOUD MODEC. - WRITE CONCEPTION DESCRIPTIONS.

DATES:

2ND WK TRASER - SMSSC BES SETTENBER.

REVIEW EARLY OCTOBER - EDINGBURGH MEETIDG WITH CAS 8/10/98. - CONCEPT. 50ALS I 20/12/98

THERMAL MECUANICAL MODEL DEMONSTRATULE frequency: Thornal Goods & vibration

Acrons

MARY: STRUCTURAL MODEL ACCORDING TO PRESERVENCE IN MATHERS MODEL

REJIEU W DECEMBER.

ASSUMPTIONS FOR RE-COSTING:

- * INFO > KJK, MSG BY AUG. 28 LATEST
- · SCHEDULE: AS PRESENTED BY BMS TODAY
- · COST TO END FY Ob/07 [= Launch + N3M6]
- · INCLUDE VAT
- · START FROM BEGINNING FY 98/99
- · COST SEPARATELY:
 - REFURLISHED QM = FS
 - No FS &

Long, JA (Judy)

 From:
 King, KJ (Ken)

 Sent:
 24 May 1999 15:28

 To:
 Long, JA (Judy)

Subject: FW: Actions from meeting

----Original Message-----

From: Bruce Swinyard [mailto:B.M.Swinyard@rl.ac.uk]

Sent: 19 August 1998 09:58

To: wto@mssl.ucl.ac.uk; mjc@mssl.ucl.ac.uk; wkpg@msslac.mssl.ucl.ac.uk;

Colin Cunningham; F.Morrison@roe.ac.uk; g.wright@roe.ac.uk;

M.J.Griffin@qmw.ac.uk; Ken King Subject: Actions from meeting

Dear All,

As promised here are a list of actions from yesterday's meeting. Ken's not in till next week but when he is I will harrass him about rejuvenating the master action list and attach formal numbers to these at that stage.

1. Ask ESA to define the exactly what is required from SPIRE to freeze the spacecraft interfaces in mid-1999.

Resp: MJG

Date: To be raised at next i/f meeting (October 1998)

2. Revise mass estimates for feedhorn option

Resp: CRC Date: 7/10/98

3. Summarise thermal dissipation for various operations modes

Resp: MJG/BMS Date: 7/10/98

4. Check and distribute vibration levels used for ISO instruments

Resp: BMS Date: 11/9/98

5. Transfer optical; thermal and mechanical data used for AO solid model to

Mary Carter Resp: GFM Date: 11/9/98

6. Send new optical design for FTS to Fraser Morrison

Resp: BMS Date: 20/8/98

7. Check new FTS layout against existing solid model and report any anomalies

Resp: GFM Date: 11/9/98

8. Write up and circulate notes on AO solid model design.

Resp: GFM Date: 11/9/98

In addition I will write a short note outlining the baseline assumptions for the instrument to be used for the structural design before 11/9/98. Could all e-mail exchanges include me, Matt and Ken in the CC: list. Please let me know of any omissions or errors in the action list.

Cheers B.